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Abstract

Understanding the extreme precipitation is very important for Ethiopia, which is heavily
dependent on low-productivity rainfed agriculture but lacks structural and non-structural
water regulating and storage mechanisms. There has been increasing concern about
whether there is an increasing trend in extreme precipitation as the climate changes.5

Existing analysis of this region has been descriptive, without taking advantage of the
advances in extreme value modeling. After reviewing the statistical methodology on
extremes, this paper presents the first analysis of extremes of this region with daily
time series of precipitation records at Debre Markos in the northwestern Highlands of
Ethiopia. We found no strong evidence to reject the null hypothesis that there is no10

increasing trend in extreme precipitation at this location.

1 Introduction

In Ethiopia, rainfall is by far the most important factor climate, as is true for most of
Africa. Low-productivity agriculture, which accounts for a majority of the national econ-
omy, relies heavily on rainfall. Climate extremes such as drought or flood often lead to15

famine and disaster for the vulnerable agricultural, social and economic environment in
Ethiopia, which lacks structural and non-structural water regulating and storage mech-
anisms. In particular, flood, as a result of extreme precipitation, poses serious threat on
food security and public safety. Estimating the probability of extreme precipitation and
characterizing the uncertainty of the estimates are crucial to, for instance, structural20

design, public safety alerts, evacuation management, and loss mitigation.
Given the increasing public concern on climate change, it is of particular interest to

test whether there is a long term increasing trend in extreme precipitation. An important
measure of extreme precipitation is the 100-year return level, which is amount of rain
in a given area in one day that is exceeded once in 100 years. That is, the upper 1st25

percentile of the distribution of annual maximum daily rainfall. Long term trend of 100-
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year return level can be analyzed with the extreme value theory provided long term
historical data.

Debre Markos is a city in the Blue Nile River basin on the Northwestern Highlands of
Ethiopia. It has latitude 10◦20′ N, longitude 37◦43′ E, and elevation 2446 m. Although
the topography of Ethiopia is highly diverse, more than 45% of the country is dominated5

by highlands with elevations greater than 1500 m, where almost 90% of the nation’s
population resides. The rain gauge station at Debre Markos provides the longest record
among all stations in Ethiopia. Daily precipitation records are available from 1953, with
only a tiny proportion of missing data; see Sect. 2 for more details. We use Debre
Markos as a case study to investigate the long term trend in extreme precipitation in10

the Northwestern Highland of Ethiopia.
Previous studies have reported rainfall patterns in Ethiopia. A decline of annual

and summer rainfall in eastern, southern, and southwestern Ethiopia was found, but
no trend was detected over central, northern, and northwestern Ethiopia (Seleshi and
Zanke, 2004; Cheung et al., 2008). It is worth noting, however, that annual or summer15

total rainfall and annual maximum daily rainfall are very different aspects of rainfall
characterization. Seleshi and Camberlin (2006) studied changes in extreme seasonal
rainfall as measured by extreme rainfall indices with daily rainfall data. One of the
indices was extreme intensity, defined as the average intensity of events greater than
or equal to the 95th percentile. A weak increasing trend in summer extreme intensity20

over the 10–11◦ North band of the Ethiopia Highlands and no trend was found over the
remaining Highlands, based on the nonparametric Mann-Kendall test for trend. These
existing analyses have been descriptive, without taking advantage of the advances in
extreme value modeling from the statistics literature. To the best of our knowledge,
extreme value analysis based on the generalized extreme value distribution (GEV) has25

not been applied to extreme precipitation data in Ethiopia.
The GEV distribution was first introduced by Fisher and Tippett (1928) as limits of

the sample maximum or minimum for independent, identically distributed variables.
Extreme value theory has evolved into a proliferating field in statistics, motivated by
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numerous environmental applications. Accessible statistical references are, for in-
stances, Coles (2001) and Beirlant et al. (2004). Extreme precipitation has been an
important application area of extreme value analysis (e.g., Durman et al., 2001; Kharin
and Zwiers, 2005; Huerta and Sansó, 2007). In particular, statistical inferences for
univariate extreme value analysis, as is the case with the precipitation data at a single5

location at Debre Markos, have been rather mature and widely applied by practitioners
in many fields. Two standard approaches can be used to fit a univariate GEV distribu-
tion. The first one applies to annual maxima of a time series, using only one data point,
the maximum, per year. The second one applies to all exceedances over a high thresh-
old, also known as “peaks over threshold” (POT); see Sect. 3 for more details. Given10

the relatively short period of data record (53 years), the POT approach is adopted in
this application as it takes full advantage of daily precipitation record in fitting GEV
distributions.

Through GEV models, this article aims to provide an extreme value analysis of the
annual maximum precipitation in Debre Markos, Ethiopia. Specifically, our objective is15

to test whether there is an increasing trend in extreme precipitation in this area given
the public concerns of suspected trend as a consequence of global climate changes.
We incorporated a linear function of time in the location parameter of a GEV distribution
and fitted the model with the POT approach to the daily precipitation data at Debre
Markos. No evidence was found to support an increasing trend in extreme precipitation20

since 1953 at this location.
The rest of the article is organized as follows. Details of the data are described

in Sect. 2. The statistical methods to be used, including the extreme value theory and
modeling techniques, are reviewed in Sect. 3. The results of the extreme value analysis
are reported in Sect. 4 with a test for trend. A discussion concludes in Sect. 5.25
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2 Data

Our raw data of daily precipitation at Debre Markos spans from 1 November 1953 to
10 December 2006. Out of the total of 19 398 days, 229 (about 1.2%) observations
are missing. The observed daily time series of precipitation is plotted in Fig. 1. The
maximum daily was 86.9 mm, observed on 14 August 1997.5

The daily precipitation series are obviously not independent and not identically dis-
tributed. Larger precipitations may tend to occur in clusters. For instance, out of 76
days in Junes with precipitation exceeding the 95th percentile of June precipitation,
there were 9 occasions of two or more consecutive exceedances. These counts are 7
out of 79, 3 out 78, and 7 out of 80 for July, August, and September, respectively, the10

other three most rainy months.
Strong seasonality naturally exists in the data. As most areas in Ethiopia, there are

three seasons in Debre Markos: main rainy season (June to September), dry season
(October to January), and small rainy season (February to May), which are locally
known as Kiremt, Bega, and Belg, respectively. Figure 2 (left panel) shows the mean15

precipitation for each day in a year, with the 11-day moving average overlaid. The plot is
consistent with the three seasons. High precipitations are observed in summer months
and low precipitations are observed in winter months. Our extreme value analysis
needs to take the clustering and seasonality into account.

3 Methods20

The basis of extreme value modeling is the GEV distribution, with distribution function

F (z;µ,σ,ξ)=

exp
{
−
[
1+ξ

(z−µ
σ

)]−1/ξ
}
, ξ 6=0, 1+ξ

(z−µ
σ

)
>0,

exp
{
−exp

[
−z−µ

σ

]}
, ξ=0,

(1)
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where µ∈R is a location parameter, σ > 0 is a scale parameter, and ξ ∈R is a shape
parameter governing the tail behavior. The Gumbel family is the limiting case of ξ→0.
The sub-families defined by ξ > 0 and ξ < 0 correspond to the Fréchet family and the
Weibull family, respectively. The m-year return level zm, with the return period 1/m,
is calculated from F (zm) = 1−1/m. When the only available data is a sequence of5

annual maxima of daily precipitation, the maximum likelihood approach can be applied
to make inferences about the unknown parameters. Usual regularity conditions of the
maximum likelihood estimator are satisfied when ξ >−0.5 (Smith, 1985)

With daily precipitation available, the peaks over threshold (POT) approach is more
attractive in that all exceedances over threshold, instead of just the annual maxima,10

contribute to the inference. Assuming that X1,...,Xn are independent and identically
distributed, Pickands (1971) showed that, for sufficiently large threshold u, the se-
quence of point processes {

(
i/(n+1),Xi

)
: i = 1,...,n} is approximated by a Poisson

process on the region (0,1)× [u,∞) with intensity function on A= (t1,t2)× [z,∞) given
by15

Λ(A)=nx(t2−t1)
[
1+ξ

(z−µ
σ

)]−1/ξ
, (2)

where nx is the number of years of data to which the available Xi correspond, ensuring
that the parameters (µ,σ,ξ) are the same as those in the GEV approximation (1) of
annual maxima. Suppose that we observe k exceedances of daily precipitation over
threshold u, x1,...,xk , from nx year’s of data. The likelihood function is20

L(µ,σ,ξ;x1,...,xk)=exp
{
−nx

[
1+ξ

(u−µ
σ

)]−1/ξ} k∏
i=1

σ−1
[

1+ξ
(
xi −µ
σ

)]−1/ξ−1

. (3)

The point process likelihood is based on all data greater than u, thus inference are
likely to be more accurate than estimates based on the classical GEV model which
studies only block maxima. The likelihood also takes into account of missing data in
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that where there are missing data, nx will be the number of year’s worth of observed
data.

So far we have assumed that the data are independent and identically distributed,
which is clearly violated in the daily series data. Before we can apply the likelihood
function, we need to remove the clustering and seasonality from the observed data.5

We use runs declustering to filter the dependent observations to obtain a set of
threshold excesses that are approximately independent. For a given threshold, de-
fine clusters to be wherever there are consecutive exceedances of this threshold. In
particular, two exceedances of the threshold that are separated apart by fewer than r
observations are deemed part of the same cluster. That is, only after a certain number,10

r , of observations falls below the threshold, the cluster is terminated (e.g. Coles, 2001,
Ch.5). In practice, it is recommended to try different r values for comparison.

To handle the seasonality, we adopt a simple and broadly applicable approach
that allows all model parameters of the Poisson process to be seasonally dependent.
Specifically, we allow each month to have its own GEV parameters as in Smith (1989).15

Finally, how do one select the threshold u? Although the value of threshold can be
arbitrary to some extent for initial analysis, too low a threshold is likely to violate the
asymptotic basis of the model and too high a threshold will lead to too few exceedances
for data analysis. An exploratory tool for choosing u is the mean residual life plot
(e.g., Coles, 2001, Ch. 4). When u is sufficiently large, the expected residual life,20

E (X −u|X >u), is a linear function of u. In a mean residual life plot, we plot the sample
mean residual life against threshold u, and choose the smallest u beyond which the
mean residual life plot is approximately linear.

4 Results

The mean residual plots with 95% confidence intervals are drawn for each month with25

run length r =1 in Fig. 3. For all months, the figures are approximately linear when the
threshold exceeds the sample 95% percentile. Therefore, we take the 95% percentile
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as threshold for each month. This is different from the analysis of Smith (1989), where
the same threshold was used for all months. The right panel of Fig. 2 shows the thresh-
olds we choose for each month, which has similar pattern as the average precipitation
plot in the left panel.

Each month is modeled separately, thus no specific form describing the seasonal5

variation is assumed. Let µi j , σi j and ξi j denote the GEV parameters for month j of
year i . To detect the long-term trend for each month, we assume the form

µi j =αj + iβj , σi j =σj >0, ξi j = ξj , (4)

where the location parameter µi j includes a linear trend in year with coefficient βj .
This form was also adopted to detect trend by Smith (1989) with ground-level ozone10

and by Cooley (2009) with annual maximum temperatures. The likelihood Lj of month
j , j =1,...,12, is maximized separately to estimate (αj ,βj ,σj ,ξj ).

It turns out that none of the βj parameters is significant at 5% level, indicating there
is no strong evidence of long-term increasing trend over time. The models are re-fitted
with all βj = 0. The sum of the minimized log likelihood is −3063.91 for the models all15

12 months, which is very close to that with βj ’s in the model (−3060.29). The parameter
estimates with no trend are shown in Table 1. There is strong seasonal pattern for the
location parameter µ. The other parameters σ and ξ, however, vary haphazardly. All
ξ’s are estimated greater than −0.5, indicating that the estimators are regular and they
have the usual asymptotic properties. The 10-year return level for each specific month,20

calculated from GEV distribution, is also shown in the table.
The 95% confidence intervals for parameter estimates are calculated by profile like-

lihood (Coles, 2001, Ch.2), which is shown in Fig. 4. Although the confidence interval
of ξ covers zero in all months, we do not reduce the model to the Gumbel model with
constraint ξ= 0, because “a reduction to the Gumbel subfamily is always risky” (Coles25

and Pericchi, 2003, p.416); the uncertainty in parameter ξ would otherwise be inappro-
priately accounted for.
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To check the sensitivity of results to the choice of threshold u and run length r , return
levels are compared under different choices. Since there is seasonality during the year,
the calculation of the return level can be derived through the maxima for each month.
Let M1,...,M12 denote the maxima for each month. The m-year return level zm will
satisfy5

1− 1
m

=Pr{max(M1,...,M12)≤ zm}=
12∏
i=1

exp

{
−
[

1+ξi

(
zm−µi

σi

)]−1/ξi
}
. (5)

The confidence interval for return level can be obtained by simulation. We simulate the
model parameters first from the the multivariate normal approximation of the estimator.
For each set of generated parameters, a realization of the return level is obtained by
solving Eq. (5). A large number (N = 5000) of realizations is used to approximate the10

confidence intervals.
Table 2 summarizes the parameter estimates and 95% confidence intervals for 10-

year, 50-year and 100-year return levels for different combinations of (u,r). It appears
that the inference is quite robust on the choice of r for all return levels. The inference on
the 10-year return level is robust to the choice of u, but the 50-year and 100-year return15

levels are less so, which is most evident from the upper bound of the 95% confidence
interval. The change in confidence intervals is not completely surprising because the
sample size of exceedances decreases as u increases. With the confidence intervals
in consideration, the changes in the point estimate of return levels appear reasonably
robust.20

Among all those threshold sets, the only significant βj ’s were found when u=Q90%
and r = 1, with standardized beta values −2.07 and −2.15 for February and July, re-
spectively. We conclude that there is no increasing long-term trend for any month.

As a model diagnosis, we performed goodness-of-fit test for the GEV distribution with
the annual maximum daily precipitation data in each of the 12 months over 53 years.25

There were 10, 10, and 13 zeros in January, February, and December, respectively.
These zeros were removed to run the goodness-of-fit test as, otherwise, a distribution
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with point mass at zero would be needed and any continuous distribution would fail
to capture this. For the POT approach, these zeroes would not affect the result as
they do not affect the selection of the threshold. The p-values of the Kolmogorov–
Smirnov test statistic are, respectively, 0.405, 0.220, 0.197, 0.127, 0.674, 0.621, 0.562,
0.560, 0.313, 0.465, 0.494, and 0.372 from January to December, suggesting no lack5

of fit from the GEV distribution. The p-values of the Anderson-Darling test give similar
results.

Finally, we present the estimated return level plots for the model with no trend
in Fig. 5. The 95% confidence intervals were obtained again by a large number
(N = 5000) of Monte Carlo simulation that accounts for the uncertainty in parameter10

estimate. The 100-year return level was estimated as 96.4, with a 95% confidence
interval (78.7,161.0).

5 Conclusions

With the extreme value theory, we presented a case study with the daily precipitation
series at Debre Markos, Ethiopia. No evidence was found to support long-term in-15

creasing trend in extreme precipitation at this location. This means, for instance, that
the 100-year return level has not increased significantly during the period of 1953–
2006. We have performed the same analysis with daily records separately at two other
sites, Bahir Dar and Gondar, in the Blue Nile River basin on the northwestern Highland
in Ethiopia. No significant trend was found at either sites.20

In practice, for a given data set, many parametric families may fit the data well and
pass the goodness-of-fit test. One can always maximize the likelihood under the as-
sumption that the data come from an assumed family, which is likely a misspecification
of the real distribution (White, 1982). As the true distribution is unknown, the fitted distri-
bution for any assumed parametric family from the maximum likelihood approach is the25

one in this assumed family that minimizes the Kullback-Leibler divergence (e.g., Kull-
back, 1987). Models from different families are in general not nested, and to perform
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model selection, one can use Vuong’s test (Vuong, 1989), which chooses the model
with the least Kullback-Leibler divergence. Nevertheless, distinguishing two nonnested
models with statistical significance requires a large amount of data when competing
models offer similar capabilities in capturing the observed data frequencies. With only
53 observations, other distributions such as generalized Pareto, fatigue life, and log-5

normal may fit the data as well as GEV. These distributions, however, can differ very
much in tails, which is what we want to study through extreme value analysis. For this
reason, a GEV model may be preferred as it is by definition the limit distribution of
sample maximums.

Our current extreme value analysis deals one site at a time. It cannot address im-10

portant questions that involve events jointly defined across multiple sites; for instance,
what is the probability that the 100-year return levels of three sites in the vicinity of a
city occur in the same year? Estimating the probability of extremal events at a network
of locations with spatial dependence appropriately accounted is a much more challeng-
ing problem. Spatial extremes is a new and rapidly developing field (e.g., Cooley et al.,15

2007; Padoan et al., 2010). Further extreme analysis in a spatial context for Ethiopia,
with data from a network of sites, is worth investigating.
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Table 1. Parameter estimates and standard errors for each month with no trend.

Number of 10-year
Month Exceedances µ σ ξ return level

1 65 3.97 (0.74) 5.74 (0.96) 0.04 (0.14) 17.45
2 56 4.61 (0.77) 5.71 (1.20) 0.11 (0.17) 19.15
3 67 11.54 (1.17) 9.05 (1.35) −0.04 (0.12) 31.00
4 68 15.60 (1.20) 9.25 (1.38) −0.04 (0.12) 35.42
5 69 18.18 (1.05) 8.13 (1.21) −0.14 (0.13) 33.92
6 67 21.72 (0.88) 6.89 (1.01) −0.11 (0.11) 35.46
7 72 30.68 (1.12) 8.80 (1.23) −0.02 (0.11) 50.00
8 75 33.04 (1.12) 8.66 (1.34) 0.18 (0.14) 57.14
9 73 28.01 (1.21) 9.50 (1.34) −0.09 (0.12) 47.34
10 66 18.71 (1.80) 13.96 (2.17) −0.24 (0.13) 42.94
11 60 6.17 (1.07) 8.20 (1.46) 0.01 (0.14) 24.94
12 57 3.89 (0.99) 7.45 (1.44) −0.03 (0.15) 20.16
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Table 2. Comparison of return levels and their 95% confidence intervals under different choices
for threshold u and run length r .

u r 10-year return level 50-year return level 100-year return level

Q85% 1 64.8 (60.9, 73.1) 81.3 (75.4, 108.9) 89.4 (82.2, 135.4)
Q85% 2 64.4 (60.6, 72.4) 80.1 (73.8, 108.2) 87.7 (79.9, 150.4)
Q90% 1 64.6 (60.4, 73.3) 81.4 (74.9, 106.5) 89.3 (80.6, 127.9)
Q90% 2 64.2 (60.0, 72.7) 80.3 (73.2, 104.9) 87.9 (79.2, 125.4)
Q95% 1 63.5 (58.7, 73.7) 84.3 (72.6, 124.1) 96.4 (78.7, 161.0)
Q95% 2 63.4 (58.6, 72.8) 83.8 (71.5, 122.6) 95.2 (78.1, 153.3)
Q97% 1 63.5 (58.7, 73.3) 85.1 (71.7, 132.1) 98.7 (77.2, 182.5)
Q97% 2 63.1 (58.0, 72.4) 84.2 (70.0, 126.1) 96.9 (75.8, 168.7)
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Fig. 1. Times series of daily precipitation at Debre Markos, Ethiopia.

for more details. Given the relatively short period of data record (53 years), the POT approach is

adopted in this application as it takes full advantage of daily precipitation record in fitting GEV

distributions.

Through GEV models, this article aims to provide an extreme value analysis of the annual max-60

imum precipitation in Debre Markos, Ethiopia. Specifically, our objective is to test whether there

is an increasing trend in extreme precipitation in this area given the public concerns of suspected

trend as a consequence of global climate changes. We incorporated a linear function of time in the

location parameter of a GEV distribution and fitted the model with the POT approach to the daily

precipitation data at Debre Markos. No evidence was found to support an increasing trend in extreme65

precipitation since 1953 at this location.

The rest of the article is organized as follows. Details of the data are described in Section 2.

The statistical methods to be used, including the extreme value theory and modeling techniques, are

reviewed in Section 3. The results of the extreme value analysis are reported in Section 4 with a test

for trend. A discussion concludes in Section 5.70

2 Data

Our raw data of daily precipitation at Debre Markos spans from November 1, 1953 to December 10,

2006. Out of the total of 19,398 days, 229 (about 1.2%) observations are missing. The observed

daily time series of precipitation is plotted in Figure 1. The maximum daily was 86.9mm, observed

on August 14, 1997.75

The daily precipitation series are obviously not independent and not identically distributed. Larger

precipitations may tend to occur in clusters. For instance, out of 76 days in Junes with precipitation

exceeding the 95th percentile of June precipitation, there were 9 occasions of two or more consec-

utive exceedances. These counts are 7 out of 79, 3 out 78, and 7 out of 80 for July, August, and

September, respectively, the other three most rainy months.80

3

Fig. 1. Times series of daily precipitation at Debre Markos, Ethiopia.
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Fig. 2. Left: Scatter plot of mean precipitation for each day overlaid with the 11-day moving average. Right:

Threshold chosen for each month.

Strong seasonality naturally exists in the data. As most areas in Ethiopia, there are three seasons in

Debre Markos: main rainy season (June to September), dry season (October to January), and small

rainy season (February to May), which are locally known as Kiremt, Bega, and Belg, respectively.

Figure 2 (left panel) shows the mean precipitation for each day in a year, with the 11-day moving

average overlaid. The plot is consistent with the three seasons. High precipitations are observed in85

summer months and low precipitations are observed in winter months. Our extreme value analysis

needs to take the clustering and seasonality into account.

3 Methods

The basis of extreme value modeling is the GEV distribution, with distribution function

F (z;µ,σ,ξ) =

exp
{
−

[
1+ξ

(
z−µ

σ

)]−1/ξ
}

, ξ 6=0, 1+ξ
(

z−µ
σ

)
> 0,

exp
{
−exp

[
− z−µ

σ

]}
, ξ =0,

(1)90

where µ ∈R is a location parameter, σ > 0 is a scale parameter, and ξ ∈R is a shape parameter

governing the tail behavior. The Gumbel family is the limiting case of ξ→ 0. The sub-families de-

fined by ξ > 0 and ξ < 0 correspond to the Fréchet family and the Weibull family, respectively. The

m-year return level zm, with the return period 1/m, is calculated from F (zm) = 1−1/m. When

the only available data is a sequence of annual maxima of daily precipitation, the maximum likeli-95

hood approach can be applied to make inferences about the unknown parameters. Usual regularity

conditions of the maximum likelihood estimator are satisfied when ξ >−0.5 (Smith, 1985)

4

Fig. 2. Left: scatter plot of mean precipitation for each day overlaid with the 11-day moving
average. Right: threshold chosen for each month.
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Fig. 3. Mean residual life plots with 95% confidence intervals for all months, r = 1.

generated parameters, a realization of the return level is obtained by solving equation (5). A large

number (N =5000) of realizations is used to approximate the confidence intervals.

7

Fig. 3. Mean residual life plots with 95% confidence intervals for all months, r =1.

8603

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/8587/2010/hessd-7-8587-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/8587/2010/hessd-7-8587-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 8587–8605, 2010

Extreme precipitation
in Ethiopia

H. Shang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Parameter estimates and standard errors for each month with no trend.

Month Number of Exceedances µ σ ξ 10-year return level

1 65 3.97 (0.74) 5.74 (0.96) 0.04 (0.14) 17.45

2 56 4.61 (0.77) 5.71 (1.20) 0.11 (0.17) 19.15

3 67 11.54 (1.17) 9.05 (1.35) −0.04 (0.12) 31.00

4 68 15.60 (1.20) 9.25 (1.38) −0.04 (0.12) 35.42

5 69 18.18 (1.05) 8.13 (1.21) −0.14 (0.13) 33.92

6 67 21.72 (0.88) 6.89 (1.01) −0.11 (0.11) 35.46

7 72 30.68 (1.12) 8.80 (1.23) −0.02 (0.11) 50.00

8 75 33.04 (1.12) 8.66 (1.34) 0.18 (0.14) 57.14

9 73 28.01 (1.21) 9.50 (1.34) −0.09 (0.12) 47.34

10 66 18.71 (1.80) 13.96 (2.17) −0.24 (0.13) 42.94

11 60 6.17 (1.07) 8.20 (1.46) 0.01 (0.14) 24.94

12 57 3.89 (0.99) 7.45 (1.44) −0.03 (0.15) 20.16
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Fig. 4. 95% confidence intervals for GEV parameters. Left: Confidence intervals for µ. Middle: Confidence

intervals for σ. Right: Confidence intervals for ξ.

Table 2 summarizes the parameter estimates and 95% confidence intervals for 10-year, 50-year170

and 100-year return levels for different combinations of (u,r). It appears that the inference is quite

robust on the choice of r for all return levels. The inference on the 10-year return level is robust to

the choice of u, but the 50-year and 100-year return levels are less so, which is most evident from the

upper bound of the 95% confidence interval. The change in confidence intervals is not completely

surprising because the sample size of exceedances decreases as u increases. With the confidence175

intervals in consideration, the changes in the point estimate of return levels appear reasonably robust.

Among all those threshold sets, the only significant βj’s were found when u = Q90% and r = 1,

with standardized beta values −2.07 and −2.15 for February and July, respectively. We conclude

8

Fig. 4. 95% confidence intervals for GEV parameters. Left: confidence intervals for µ. Middle:
confidence intervals for σ. Right: confidence intervals for ξ.
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Table 2. Comparison of return levels and their 95% confidence intervals under different choices for threshold

u and run length r.

u r 10-year return level 50-year return level 100-year return level

Q85% 1 69.0 (64.6, 78.4) 90.0 (82.3, 117.6) 100.5 (91.3, 147.8)

Q85% 2 69.0 (64.5, 78.5) 89.8 (81.8, 118.5) 100.1 (89.6, 154.0)

Q90% 1 68.6 (63.5, 79.0) 91.4 (82.0, 122.8) 103.4 (90.8, 154.6)

Q90% 2 68.5 (63.3, 78.7) 90.6 (80.9, 119.6) 102.0 (88.7, 146.6)

Q95% 1 68.4 (61.7, 80.8) 97.2 (80.5, 142.2) 113.4 (89.5, 186.5)

Q95% 2 68.4 (61.8, 80.5) 96.8 (80.0, 141.3) 112.7 (89.8, 184.0)

Q97% 1 68.1 (61.3, 81.2) 99.3 (79.6, 155.4) 118.0 (90.1, 223.4)

Q97% 2 67.9 (61.1, 80.1) 98.3 (78.5, 153.4) 116.4 (88.0, 208.9)
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Fig. 5. Return level plot with 95% confidence intervals obtained from 5000 Monte Carlo simulation. The circles

are the empirical estimates based on the complete 53-year data.

that there is no increasing long-term trend for any month.

As a model diagnosis, we performed goodness-of-fit test for the GEV distribution with the an-180

nual maximum daily precipitation data in each of the 12 months over 53 years. There were 10,
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Fig. 5. Return level plot with 95% confidence intervals obtained from 5000 Monte Carlo simu-
lation. The circles are the empirical estimates based on the complete 53-year data.
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